Logo

$49

Motion Planning for Self-Driving Cars

Created by -

Steven Waslander,Jonathan Kelly
,
University of Toronto

0.00

(0 ratings)

English

Wishlist

Overview

Welcome to Motion Planning for Self-Driving Cars, the fourth course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the main planning tasks in autonomous driving, including mission planning, behavior planning and local planning. By the end of this course, you will be able to find the shortest path over a graph or road network using Dijkstra's and the A* algorithm, use finite state machines to select safe behaviors to execute, and design optimal, smooth paths and velocity profiles to navigate safely around obstacles while obeying traffic laws. You'll also build occupancy grid maps of static elements in the environment and learn how to use them for efficient collision checking. This course will give you the ability to construct a full self-driving planning solution, to take you from home to work while behaving like a typical driving and keeping the vehicle safe at all times. For the final project in this course, you will implement a hierarchical motion planner to navigate through a sequence of scenarios in the CARLA simulator, including avoiding a vehicle parked in your lane, following a lead vehicle and safely navigating an intersection. You'll face real-world randomness and need to work to ensure your solution is robust to changes in the environment. This is an intermediate course, intended for learners with some background in robotics, and it builds on the models and controllers devised in Course 1 of this specialization. To succeed in this course, you should have programming experience in Python 3.0, and familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses) and calculus (ordinary differential equations, integration).

course image

USD 49

provider image

Type: Online

This course includes

  • Approx. 22 hours to complete
  • Earn a Certificate upon completion
  • Start instantly and learn at your own schedule.

Taken this course?

Share your experience with other students

Share

Add Review

course image

USD 49

provider image

Type: Online

This course includes

  • Approx. 22 hours to complete
  • Earn a Certificate upon completion
  • Start instantly and learn at your own schedule.

Taken this course?

Share your experience with other students

Share

Add Review

Motion Planning for Self-Driving Cars

Created by -

Steven Waslander,Jonathan Kelly
,
University of Toronto

0.00

(0 ratings)

All Levels

Start Date: February 10th 2021

Course Description

Welcome to Motion Planning for Self-Driving Cars, the fourth course in University of Toronto’s Self-Driving Cars Specialization. This course will introduce you to the main planning tasks in autonomous driving, including mission planning, behavior planning and local planning. By the end of this course, you will be able to find the shortest path over a graph or road network using Dijkstra's and the A* algorithm, use finite state machines to select safe behaviors to execute, and design optimal, smooth paths and velocity profiles to navigate safely around obstacles while obeying traffic laws. You'll also build occupancy grid maps of static elements in the environment and learn how to use them for efficient collision checking. This course will give you the ability to construct a full self-driving planning solution, to take you from home to work while behaving like a typical driving and keeping the vehicle safe at all times. For the final project in this course, you will implement a hierarchical motion planner to navigate through a sequence of scenarios in the CARLA simulator, including avoiding a vehicle parked in your lane, following a lead vehicle and safely navigating an intersection. You'll face real-world randomness and need to work to ensure your solution is robust to changes in the environment. This is an intermediate course, intended for learners with some background in robotics, and it builds on the models and controllers devised in Course 1 of this specialization. To succeed in this course, you should have programming experience in Python 3.0, and familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses) and calculus (ordinary differential equations, integration).

The information used on this page is how each course is described on the Coursera platform.

Course Structure

Tags

Mark Complete


About the Instructor

Steven Waslander,Jonathan Kelly,University of Toronto

No Reviews at this moment.

Explore Skillqore

Skillqore Newsletter

Keep me up to date with content, updates, and offers from Skillqore


Copyright © 2020 Skillqore, Inc. All Rights Reserved.